Ïîèñê ïî áàçå äîêóìåíòîâ:

Áåñïëàòíîå îáó÷åíèå ïî àëãîòðåéäèíãó íà Python è Backtrader

 

ÏÎÏÐÀÂÊÀ Ê ÃÎÑÒ Ð 52748-2007

"ÄÎÐÎÃÈ ÀÂÒÎÌÎÁÈËÜÍÛÅ ÎÁÙÅÃÎ ÏÎËÜÇÎÂÀÍÈß.

ÍÎÐÌÀÒÈÂÍÛÅ ÍÀÃÐÓÇÊÈ, ÐÀÑ×ÅÒÍÛÅ ÑÕÅÌÛ ÍÀÃÐÓÆÅÍÈß

È ÃÀÁÀÐÈÒÛ ÏÐÈÁËÈÆÅÍÈß"

 

ÎÊÑ 93.080.10

 

Ãðóïïà Ò52

 

 

──────────────────┬────────────────────────────────────────┬───────────────────────────────────────

   êàêîì ìåñòå                 Íàïå÷àòàíî                              Äîëæíî áûòü

──────────────────┼────────────────────────────────────────┼───────────────────────────────────────

 Ïóíêò 1.         │ðåêîíñòðóêöèè è êàïèòàëüíîãî ðåìîíòà    ðåêîíñòðóêöèè àâòîìîáèëüíûõ äîðîã

Ïåðâûé àáçàö      │àâòîìîáèëüíûõ äîðîã                    

 Ïóíêò 3.1.2      │ýëåìåíòû ñîîðóæåíèÿ èëè ðàñïîëîæåííûå   │ýëåìåíòû ñîîðóæåíèÿ èëè óñòðîéñòâà

                  │íà íèõ óñòðîéñòâà                       │íà íèõ

 Ïóíêò 3.1.3      │òðàíñïîðòíûõ ñðåäñòâ, ïðèíèìàåìûå       │òðàíñïîðòíûõ ñðåäñòâ è ïåøåõîäîâ,

                                                          │ïðèíèìàåìûå

 Ïóíêò 3.2.       │îò íåñòàíäàðòíûõ òðàíñïîðòíûõ ñðåäñòâ,  │îò òðàíñïîðòíûõ ñðåäñòâ, îñóùåñòâëÿþùèõ

Òðåòèé àáçàö      │ïðîïóñêàåìûõ â ñïåöèàëüíîì ðåæèìå.      ïåðåâîçêè òÿæåëîâåñíûõ ãðóçîâ.

 Ïóíêò 4.1.                                              

Ðèñóíîê 1à.                                              

Ïîëîñà íàãðóçêè.               q = 0,5 Ê                  │q = K

Âèä ñëåâà                                                 

 âèä ñïðàâà                    q = 0,5 K                  │0,5 Ê

(2 ðàçà)                                                 

 ïîäðèñóíî÷íàÿ    │à - àâòîìîáèëüíàÿ êîëåñíàÿ íàãðóçêà ÀÊ  │à - íàãðóçêà ÀÊ

ïîäïèñü                                                   

 Ðèñóíîê 1á. Ïîä- │á - òÿæåëàÿ îäèíî÷íàÿ àâòîìîáèëüíàÿ     │á - íàãðóçêà ÍÊ

ðèñóíî÷íàÿ ïîäïèñü│íàãðóçêà ÍÊ                            

 äëÿ q            │íàãðóçêà ïî êîëåå âäîëü äîðîãè          │íàãðóçêà âäîëü äîðîãè (ñîîðóæåíèÿ),

                  │(ñîîðóæåíèÿ), êÍ/ì;                     │êÍ/ì;

 Ïóíêò 4.2        │ðàâíîìåðíî ðàñïðåäåëåííîé âäîëü äîðîãè.ðàâíîìåðíî ðàñïðåäåëåííóþ âäîëü äîðîãè

                                                          │íàãðóçêó èíòåíñèâíîñòüþ Ê (êÍ/ì).

 Ïóíêò 4.3.       ñëåäóåò ïðîâîäèòü ïðîâåðêó              │ñëåäóåò òàêæå ïðîâîäèòü ïðîâåðêó

Ïðèìå÷àíèå                                               

 Ïóíêò 4.6.       │áàçà äëÿ íîðìàòèâíîé íàãðóçêè ÀÊ        │áàçà òåëåæêè äëÿ íîðìàòèâíîé íàãðóçêè

Ïåðâûé àáçàö                                              │ÀÊ

 Ïóíêò 4.7                           -                    │4.7 Èíòåíñèâíîñòü íîðìàòèâíîé íàãðóçêè

                                                          │îò ïåøåõîäîâ íà òðîòóàðàõ (ñëóæåáíûõ

                                                          ïðîõîäàõ) è ïåøåõîäíûõ ìîñòàõ

                                                          │ñîñòàâëÿåò 4 êÍ/ì2 áåç ó÷åòà íàãðóçêè

                                                          │ÀÊ è 2 êÍ/ì2 ïðè ó÷åòå ñîâìåñòíî ñ

                                                          │íàãðóçêîé ÀÊ.

 Ïóíêò 5.2.1.     │íàãðóçêó, ïðèâåäåííóþ íà ðèñóíêå 1à.    │íàãðóçêó ÀÊ.

Âòîðîé àáçàö                                             

 Ïóíêò 5.2.2.                18Ê                                      4 õ 18Ê

Ôîðìóëà           │Í  =                            ,       │Í  = ---------------------------,

                  │ ý   (d + 0,2) (ñ + 0,8) ãàììà          │ ý   (D + 0,2) (c + 0,8) ãàììà

                                                ãð                                      ãð

                  │ãäå 18Ê - íîðìàòèâíàÿ íàãðóçêà ÍÊ, êÍ   │ãäå 18Ê - íîðìàòèâíàÿ îñåâàÿ íàãðóçêà

                                                          │ÍÊ, êÍ

 Ïóíêò 5.3. Ïîñëå │                   -                    │Ïðè ðàñ÷åòå ýëåìåíòîâ ìîñòîâûõ

íàèìåíîâàíèÿ                                              │ñîîðóæåíèé íîðìàòèâíûå íàãðóçêè äîëæíû

(ïåðåä ïóíêòîì                                            │óñòàíàâëèâàòüñÿ â íàèáîëåå íåâûãîäíîå

5.3.1)                                                    │äëÿ ðàññ÷èòûâàåìîãî ýëåìåíòà ïîëîæåíèå.

 Ïóíêò 5.3.2.     │ïîëîñàìè íàãðóçêè (ñì. ðèñóíîê 1à).     ïîëîñàìè íàãðóçêè ÀÊ.

Ïåðâûé àáçàö                                              

 Ïóíêò 5.3.3.     │ðàçìåùàåìûõ â íàèáîëåå îïàñíîì ïîëîæåíèè│ïîëîñ íàãðóçêè ÀÊ, ðàñïîëîæåííûõ â

Ïåðâûé àáçàö      │ïî âñåé øèðèíå åçäîâîãî ïîëîòíà (âêëþ÷àÿ│íàèáîëåå îïàñíîì ïîëîæåíèè ïî øèðèíå

                  │ïîëîñû áåçîïàñíîñòè) (ñì. ðèñóíîê 1à)   │åçäîâîãî ïîëîòíà (âêëþ÷àÿ ïîëîñû

                                                          │áåçîïàñíîñòè). Íà ìîñòàõ ïîä îäíó

                                                          │ïîëîñó äâèæåíèÿ íàãðóæåíèå ïðîâîäèòñÿ

                                                          │îäíîé ïîëîñîé íàãðóçêè ÀÊ.

 Ïóíêò 5.3.4      │íàãðóçêîé (ñì. ðèñóíîê 1á),             │íàãðóçêîé ÍÊ,

 Ïóíêò 6.1.                     Ðèñóíîê                                   Ðèñóíîê

Ðèñóíîê 2à                                               

ðèñóíîê 2â.       â - ñ ðàçäåëèòåëüíîé ïîëîñîé            │â - ñ ðàçäåëèòåëüíîé ïîëîñîé ïðè

Ïîäðèñóíî÷íàÿ                                             │íàëè÷èè îãðàæäåíèÿ

ïîäïèñü                                                   

 Ïóíêò 6.4.       │ ┌──┬─┬───────────────────┬───┬───────┐ │ ┌──┬─┬───────────────────┬───┬───────┐

Òàáëèöà 1. Äëÿ    │ │II│4│à - (9,0 + Ñ + 9,0)│2,0│7,0 õ 2│ │ │II│4│à - (9,0 + Ñ + 9,0)│2,0│7,0 õ 2│

êàòåãîðèè äîðîã II│ │  │2│     Ã - 11,5      │2,0│  7,5  │ │ │  │ │-------------------│         

                  │ └──┴─┴───────────────────┴───┴───────┘ │ │  │ │    2 (Ã - 11)              

                                                          │ │  │2│      Ã - 11,5     │2,0│  7,5 

                                                          │ └──┴─┴───────────────────┴───┴───────┘

 ïðèìå÷àíèå 1     │Øèðèíà ðàñ÷åòíîãî àâòîìîáèëÿ 2,55 ì.    │Øèðèíà ðàñ÷åòíîãî àâòîìîáèëÿ - 2,5 ì.

 ïðèìå÷àíèå 3.              à = 4Ï + 2nb + C.                    à = Ï + nb + Ñ + nb + Ï.

Ôîðìóëà                                                  

 Ïóíêò 6.9.       │íà ðàçäåëèòåëüíîé ïîëîñå âìåñòî æåñòêèõ │íà ðàçäåëèòåëüíîé ïîëîñå ìåòàëëè÷åñêèõ

Òðåòèé àáçàö      │ìåòàëëè÷åñêèõ îãðàæäåíèé                îãðàæäåíèé

 Ïóíêò 6.10.                         -                                Ðàçìåðû â ìåòðàõ

Òàáëèöà 2. Ïåðåä                                         

ãîëîâêîé òàáëèöû                                         

 Ïóíêò 6.11.                                              

Âòîðîé - âîñüìîé  │ 6,0 ì - ïðè íàïðÿæåíèè äî   1 êÂ;      │ 6,0 ì - ïðè íàïðÿæåíèè    äî   1 êÂ;

àáçàöû            │ 7,0 ì    "      "      "  110 êÂ;      │ 7,0 ì    "   "  îò   1 ê äî 110 êÂ;

                  │ 7,5 ì    "      "      "  150 êÂ;      │ 7,5 ì    "   "  îò 110 ê äî 150 êÂ;

                  │ 8,0 ì    "      "      "  220 êÂ;      │ 8,0 ì    "   "  îò 150 ê äî 220 êÂ;

                  │ 8,5 ì    "      "      "  330 êÂ;      │ 8,5 ì    "   "  îò 220 ê äî 330 êÂ;

                  │ 9,0 ì    "      "      "  500 êÂ;      │ 9,0 ì    "   "  îò 330 ê äî 500 êÂ;

                  │16,0 ì    "      "      "  750 êÂ.      │16,0 ì    "   "  îò 500 ê äî 750 êÂ.

 

 





ÒÅÕÍÎÐÌÀÒÈÂÛ ÄËß ÑÒÐÎÈÒÅËÅÉ È ÏÐÎÅÊÒÈÐÎÂÙÈÊÎÂ

ßíäåêñ öèòèðîâàíèÿ


Copyright © www.docstroika.ru, 2013 - 2024